Derivation of a compressible bubbly flow model

CJC - MA
$25-27$ septembre 2023

Hélène Mathis
Université de Montpellier
In collaboration with Matthieu Hillairet \& Nicolas Seguin (Montpellier)

Motivations

Context

- Nuclear safety: accident situation in pressurized water reactor
- High temperature and pressure conditions
- Compressible two-phase flows (or multiphase flows) with heterogeneities (bubbles, droplets...)
- Thermodynamical (dis)equilibrium
- Thermal, mechanical, mass transfers through the interface
- Complex wave interactions (shocks, phase transition...)

Motivations

- Macroscopic description
- Derive average models
- Implicit description of the interface
- Compressible behaviour
- Mathematical structure
- Well-posedness (smooth solutions, discontinuities...)

The richest model [Baer, Nunziato '86]

- Euler system for two immiscible phases $k=f, g$ with coupling terms
- Phasic state $w_{k}=\left(\rho_{k}, u_{k}\right), w=\left(w_{f}, w_{g}\right)$
- Pressure $p_{k}=p_{k}\left(\rho_{k}\right)$, chemical potential $g_{k}=g_{k}\left(\rho_{k}\right)$
- Volume fraction $\alpha_{k} \in[0,1]$

$$
\begin{aligned}
& \alpha_{f}+\alpha_{g}=1 \quad \rho=\alpha_{f} \rho_{f}+\alpha_{g} \rho_{g} \\
& \partial_{t} \alpha_{f}+u_{i}(w) \partial_{x} \alpha_{f}=\lambda_{p}(w)\left(p_{f}-p_{g}\right) \\
& \partial_{t}\left(\alpha_{k} \rho_{k}\right)+\partial_{x}\left(\alpha_{k} \rho_{k} u_{k}\right)=\lambda_{\rho}(w)\left(g_{l}-g_{k}\right) \\
& \partial_{t}\left(\alpha_{k} \rho_{k} u_{k}\right)+\partial_{x}\left(\alpha_{k} \rho_{k} u_{k}^{2}+\alpha_{k} p_{k}\right)-p_{i}(w) \partial_{x} \alpha_{k}=\lambda_{u}(w)\left(u_{l}-u_{k}\right)
\end{aligned}
$$

\checkmark Well-posedness although nonconservative: hyperbolicity, symmetrizable, jump conditions...
\boldsymbol{X} Heuristic closure laws for interfacial quantities $u_{i}(w)$ and $p_{i}(w)$
X Empirical source term (and relaxation time scales $\lambda_{p, \rho, u}(w)$ as well)

Derivation of averaged models

- Averaging approach
[Drew \& Passman '98, Ishii \& Hibiki '06,...]
- Microscopic description
- Instantaneous local conservation laws for each separated phase
- Jump conditions through the interfaces
- Averaging process
- Introduce time and/or volume scales, or random disturbances
- Average the microscopic model wrt the small scales
\checkmark Baer-Nunziato type model
x Closure laws
x Definition of the averaging operators

Derivation of averaged models

- Averaging approach
[Drew \& Passman '98, Ishii \& Hibiki '06,...]
- Microscopic description
- Instantaneous local conservation laws for each separated phase
- Jump conditions through the interfaces
- Averaging process
- Introduce time and/or volume scales, or random disturbances
- Average the microscopic model wrt the small scales
\checkmark Baer-Nunziato type model
x Closure laws
x Definition of the averaging operators
- Homogenization approach
[Serre '91 \& '01, E '92, Hillairet '07, Bresch \& Huang '11, Bresch, Hillairet '15 \& '19, Hillairet '18, Bresch, Burtea \& Lagoutière ' $20, \ldots$. $]$

Homogenization for two-phase flows

Standard approach

- Microscopic description
- Viscous flows (smooth enough solutions) for both phase
- Conditions through the interfaces ("perfect transducers")
- One-fluid model with high-oscillatory density solutions
- Pass to the limit to deduce macroscopic quantities $\bar{\alpha}_{f, g}, \bar{\rho}_{f, g}, \bar{\rho}$ and \bar{u}

Homogenization for two-phase flows

Standard approach

- Microscopic description
- Viscous flows (smooth enough solutions) for both phase
- Conditions through the interfaces ("perfect transducers")
- One-fluid model with high-oscillatory density solutions
- Pass to the limit to deduce macroscopic quantities $\bar{\alpha}_{f, g}, \bar{\rho}_{f, g}, \bar{\rho}$ and \bar{u}

$$
\left\{\begin{array}{l}
\bar{\alpha}_{f}+\bar{\alpha}_{g}=1, \quad \bar{\rho}=\bar{\alpha}_{f} \bar{\rho}_{f}+\bar{\alpha}_{g} \bar{\rho}_{g} \\
\partial_{t} \bar{\alpha}_{f}+\bar{u} \partial_{x} \bar{\alpha}_{f}=\frac{\bar{\alpha}_{g} \bar{\alpha}_{f}}{\bar{\alpha}_{f} \mu_{g}+\bar{\alpha}_{g} \mu_{f}}\left[\left(\mu_{g}-\mu_{f}\right) \partial_{x} \bar{u}+\left(\mathrm{p}_{f}\left(\bar{\rho}_{f}\right)-\mathrm{p}_{g}\left(\bar{\rho}_{g}\right)\right)\right] \\
\partial_{t}\left(\bar{\alpha}_{f} \bar{\rho}_{f}\right)+\partial_{x}\left(\bar{\alpha}_{f} \bar{\rho}_{f} \bar{u}\right)=0, \quad \partial_{t}\left(\bar{\alpha}_{g} \bar{\rho}_{g}\right)+\partial_{x}\left(\bar{\alpha}_{g} \bar{\rho}_{g} \bar{u}\right)=0 \\
\partial_{t}(\bar{\rho} \bar{u})+\partial_{x}\left(\bar{\rho} \bar{u}^{2}\right)=\partial_{x} \bar{\Sigma} \\
\text { with } \bar{\Sigma}=\frac{\mu_{g} \mu_{f}}{\bar{\alpha}_{f} \mu_{g}+\bar{\alpha}_{g} \mu_{f}}\left[\partial_{x} \bar{u}-\left(\frac{\bar{\alpha}_{f}}{\mu_{f}} \mathrm{p}_{f}\left(\bar{\rho}_{f}\right)+\frac{\bar{\alpha}_{g}}{\mu_{g}} \mathrm{p}_{g}\left(\bar{\rho}_{g}\right)\right)\right]
\end{array}\right.
$$

Homogenization for two-phase flows

Standard approach

- Microscopic description
- Viscous flows (smooth enough solutions) for both phase
- Conditions through the interfaces ("perfect transducers")
- One-fluid model with high-oscillatory density solutions
- Pass to the limit to deduce macroscopic quantities $\bar{\alpha}_{f, g}, \bar{\rho}_{f, g}, \bar{\rho}$ and \bar{u}

$$
\left\{\begin{array}{l}
\bar{\alpha}_{f}+\bar{\alpha}_{g}=1, \quad \bar{\rho}=\bar{\alpha}_{f} \bar{\rho}_{f}+\bar{\alpha}_{g} \bar{\rho}_{g} \\
\partial_{t} \bar{\alpha}_{f}+\bar{u} \partial_{x} \bar{\alpha}_{f}=\frac{\bar{\alpha}_{g} \bar{\alpha}_{f}}{\bar{\alpha}_{f} \mu_{g}+\bar{\alpha}_{g} \mu_{f}}\left[\left(\mu_{g}-\mu_{f}\right) \partial_{x} \bar{u}+\left(\mathrm{p}_{f}\left(\bar{\rho}_{f}\right)-\mathrm{p}_{g}\left(\bar{\rho}_{g}\right)\right)\right] \\
\partial_{t}\left(\bar{\alpha}_{f} \bar{\rho}_{f}\right)+\partial_{x}\left(\bar{\alpha}_{f} \bar{\rho}_{f} \bar{u}\right)=0, \quad \partial_{t}\left(\bar{\alpha}_{g} \bar{\rho}_{g}\right)+\partial_{x}\left(\bar{\alpha}_{g} \bar{\rho}_{g} \bar{u}\right)=0 \\
\partial_{t}(\bar{\rho} \bar{u})+\partial_{x}\left(\bar{\rho} \bar{u}^{2}\right)=\partial_{x} \bar{\Sigma} \\
\text { with } \bar{\Sigma}=\frac{\mu_{g} \mu_{f}}{\bar{\alpha}_{f} \mu_{g}+\bar{\alpha}_{g} \mu_{f}}\left[\partial_{x} \bar{u}-\left(\frac{\bar{\alpha}_{f}}{\mu_{f}} \mathrm{p}_{f}\left(\bar{\rho}_{f}\right)+\frac{\bar{\alpha}_{g}}{\mu_{g}} \mathrm{p}_{g}\left(\bar{\rho}_{g}\right)\right)\right]
\end{array}\right.
$$

Pros \& Cons

\checkmark Fully rigorous
x Simple interface behaviors, one-velocity models

- Extensions: different EoS [Bresch \& Hillairet '19], temperature [Hillairet '21], density overlap [Bresch, Burtea \& Lagoutière '20]

Homogenization for two-phase flows

Standard approach

- Microscopic description
- Viscous flows (smooth enough solutions) for both phase
- Conditions through the interfaces ("perfect transducers") x
- One-fluid model with high-oscillatory density solutions X
- Pass to the limit to deduce macroscopic quantities $\bar{\alpha}_{f, g}, \bar{\rho}_{f, g}, \bar{\rho}$ and \bar{u}

$$
\left\{\begin{array}{l}
\bar{\alpha}_{f}+\bar{\alpha}_{g}=1, \quad \bar{\rho}=\bar{\alpha}_{f} \bar{\rho}_{f}+\bar{\alpha}_{g} \bar{\rho}_{g} \\
\partial_{t} \bar{\alpha}_{f}+\bar{u} \partial_{x} \bar{\alpha}_{f}=\frac{\bar{\alpha}_{g} \bar{\alpha}_{f}}{\bar{\alpha}_{f} \mu_{g}+\bar{\alpha}_{g} \mu_{f}}\left[\left(\mu_{g}-\mu_{f}\right) \partial_{x} \bar{u}+\left(\mathrm{p}_{f}\left(\bar{\rho}_{f}\right)-\mathrm{p}_{g}\left(\bar{\rho}_{g}\right)\right)+\ldots\right] \\
\partial_{t}\left(\bar{\alpha}_{f} \bar{\rho}_{f}\right)+\partial_{x}\left(\bar{\alpha}_{f} \bar{\rho}_{f} \bar{u}\right)=0, \quad \partial_{t}\left(\bar{\alpha}_{g} \bar{\rho}_{g}\right)+\partial_{x}\left(\bar{\alpha}_{g} \bar{\rho}_{g} \bar{u}\right)=0 \\
\partial_{t}(\bar{\rho} \bar{u})+\partial_{x}\left(\bar{\rho} \bar{u}^{2}\right)=\partial_{x} \bar{\Sigma} \\
\text { with } \bar{\Sigma}=\frac{\mu_{g} \mu_{f}}{\bar{\alpha}_{f} \mu_{g}+\bar{\alpha}_{g} \mu_{f}}\left[\partial_{x} \bar{u}-\left(\frac{\bar{\alpha}_{f}}{\mu_{f}} \mathrm{p}_{f}\left(\bar{\rho}_{f}\right)+\frac{\bar{\alpha}_{g}}{\mu_{g}} \mathrm{p}_{g}\left(\bar{\rho}_{g}\right)\right)+\ldots\right] \\
+ \text { Additional relations }
\end{array}\right.
$$

Goal [Hillairet, M. \& Seguin '23]

- Introduce more complex interface behavior
- Couple different fluid models

Outline/Methodology

(1) Microscopic model with N bubbles
(2) Macroscopic to microscopic initial data
(3) Solve the microscopic model
(4) Pass to the limit $N \rightarrow \infty$ to deduce macroscopic quantities
(5) Find the associated macroscopic evolution equations

The one-dimensional microscopic model

Assumptions for the microscopic model (first in 3D)

- Fluid f, N bubbles of gas $g, k \in\{1, \ldots, N\}$
- Compressible Navier-Stokes equations for both phases
- Bubbles remain spherical (translation, dilatation, rotation)
- Interface conditions
- Continuity of the velocity field
- Surface tension

$$
\begin{gathered}
u_{f}=u_{k} \\
\left(\Sigma_{f}-\Sigma_{n}\right) \nu=\kappa_{n} \nu
\end{gathered}
$$

The one-dimensional microscopic model

Assumptions for the microscopic model (first in 3D)

- Fluid f, N bubbles of gas $g, k \in\{1, \ldots, N\}$
- Compressible Navier-Stokes equations for both phases
- Bubbles remain spherical (translation, dilatation, rotation)
- Interface conditions
- Continuity of the velocity field

$$
\begin{aligned}
u_{f} & =u_{k} \\
\left(\Sigma_{f}-\Sigma_{n}\right) & =\gamma / R_{k}
\end{aligned}
$$

In 1D

- In the fluid domain $\mathcal{F}(t)$
$-\rho_{f}, u_{f}, \Sigma_{f}=\mu_{f} \partial_{x} u_{f}-\mathrm{p}_{f}\left(\rho_{f}\right)$
- In each buble $B_{k}(t)=B\left(c_{k}(t), R_{k}(t)\right)$

The one-dimensional microscopic model

In 1D

In the fluid domain $\mathcal{F}(t)$

$$
\left\{\begin{array}{l}
\partial_{t} \rho_{f}+\partial_{x}\left(\rho_{f} u_{f}\right)=0 \\
\partial_{t}\left(\rho_{f} u_{f}\right)+\partial_{x}\left(\rho_{f}\left(u_{f}\right)^{2}\right)=\partial_{x} \Sigma_{f} \\
\text { with } \Sigma_{f}=\mu_{f} \partial_{x} u_{f}-\mathrm{p}_{f}\left(\rho_{f}\right)
\end{array}\right.
$$

In each buble $B_{k}(t)=B\left(c_{k}(t), R_{k}(t)\right)$ of (constant) mass m_{k} :

$$
\left\{\begin{array}{l}
m_{k} \ddot{c}_{k}=\Sigma_{f}\left(t, x_{k}^{+}\right)-\Sigma_{f}\left(t, x_{k}^{-}\right) \\
\frac{m_{k}}{3} \ddot{R}_{k}=\Sigma_{f}\left(t, x_{k}^{-}\right)+\Sigma_{f}\left(t, x_{k}^{+}\right)-2 \Sigma_{k}+\frac{\gamma_{s}}{R_{k}} \\
\text { with } \Sigma_{k}=\mu_{g} \partial_{x} u_{k}-\mathrm{p}_{g}\left(\frac{m_{k}}{2 R_{k}}\right)
\end{array}\right.
$$

The one-dimensional microscopic model

In 1D

In the fluid domain $\mathcal{F}(t)$

$$
\left\{\begin{array}{l}
\partial_{t} \rho_{f}+\partial_{x}\left(\rho_{f} u_{f}\right)=0 \\
\partial_{t}\left(\rho_{f} u_{f}\right)+\partial_{x}\left(\rho_{f}\left(u_{f}\right)^{2}\right)=\partial_{x} \Sigma_{f} \\
\text { with } \Sigma_{f}=\mu_{f} \partial_{x} u_{f}-\mathrm{p}_{f}\left(\rho_{f}\right)
\end{array}\right.
$$

In each buble $B_{k}(t)=B\left(c_{k}(t), R_{k}(t)\right)$ of (constant) mass m_{k} :

$$
\left\{\begin{array}{l}
m_{k} \ddot{c}_{k}=\Sigma_{f}\left(t, x_{k}^{+}\right)-\Sigma_{f}\left(t, x_{k}^{-}\right) \\
\frac{m_{k}}{3} \ddot{R}_{k}=\Sigma_{f}\left(t, x_{k}^{-}\right)+\Sigma_{f}\left(t, x_{k}^{+}\right)-2 \Sigma_{k}+\frac{\gamma_{s}}{R_{k}} \\
\text { with } \Sigma_{k}=\mu_{g} \partial_{x} u_{k}-\mathrm{p}_{g}\left(\frac{m_{k}}{2 R_{k}}\right)
\end{array}\right.
$$

- Well posedness of the Cauchy problem for a time $T>0$, depending on $N \ldots$

Outline/Methodology

(1) Microscopic model with N bubbles
(2) Macroscopic to microscopic initial data
(3) Solve the microscopic model
(4) Pass to the limit $N \rightarrow \infty$ to deduce macroscopic quantities
(5) Find the associated macroscopic evolution equations

Macroscopic to microscopic initial data

At the macroscopic scale, both fluids are present everywhere in the domain Ω

Macroscopic to microscopic initial data

At the macroscopic scale, both fluids are present everywhere in the domain Ω

Macroscopic initial data

- Density of the fluid $\bar{\rho}_{f}^{0} \geq \rho_{\text {min }}$
- Density of the gas $\bar{\rho}_{g}^{0} \geq \rho_{\text {min }}$
- Mean velocity \bar{u}^{0}
- Void fraction $\bar{\alpha}_{g}^{0}$

Macroscopic to microscopic initial data

At the macroscopic scale, both fluids are present everywhere in the domain Ω
Macroscopic initial data

- Density of the fluid $\bar{\rho}_{f}^{0} \geq \rho_{\text {min }}$
- Density of the gas $\bar{\rho}_{g}^{0} \geq \rho_{\text {min }}$
- Mean velocity \bar{u}^{0}
- Void fraction $\bar{\alpha}_{g}^{0}$

Reconstruction of gas-bubble distribution

- Probability distribution of the bubbles, in position x and radius r

$$
\bar{S}_{g}^{0}=\bar{S}_{g}^{0}(x, r) \in L^{1}\left(\Omega \times \mathbb{R}^{+}\right)
$$

Moments of the probability distribution \bar{S}_{g}^{0} :

- 1-st order moment \rightsquigarrow void fraction

$$
\bar{\alpha}_{g}^{0}(x)=\int_{\mathbb{R}^{+}}(2 r) \bar{S}_{g}^{0}(x, r) \mathrm{d} r
$$

- 0-th order moment (\rightsquigarrow gas covolume or "interfacial area")

$$
\bar{f}_{g}^{0}(x)=\int_{\mathbb{R}^{+}} \bar{S}_{g}^{0}(x, r) \mathrm{d} r
$$

Macroscopic to microscopic initial data

Family of microscopic initial data to be constructed from $\bar{S}_{g}^{0}, \bar{\rho}_{f, g}^{0}$ and \bar{u}^{0}
For any bubble number $N \geq 1$:
(1) Define a bubble distribution from \bar{S}_{g}^{0} to get $\left(c_{k}^{(N)}, R_{k}^{(N)}\right)_{k=1, \ldots, N}$
(c) Define the densities

$$
\begin{cases}\rho_{f}^{(N)}(0, x) & \text { on } \mathcal{F}^{(N)}(0) \\ \rho_{k}^{(N)}(0, x) & \text { on } B_{k}^{(N)}(0)\end{cases}
$$

(3) Define the velocities

$$
\begin{cases}u_{f}^{(N)}(0, x) & \text { on } \mathcal{F}^{(N)}(0) \\ \dot{c}_{k}^{(N), 0} \text { and } \dot{R}_{k}^{(N), 0} & \text { on } B_{k}^{(N)}(0)\end{cases}
$$

Outline/Methodology

(1) Microscopic model with N bubbles
(2) Macroscopic to microscopic initial data
(3) Solve the microscopic model
(4) Pass to the limit $N \rightarrow \infty$ to deduce macroscopic quantities
(5) Find the associated macroscopic evolution equations

Solve the microscopic model

Scaling

- $m_{k}, R_{k}^{0},\left|\mathcal{F}_{k}^{0}\right|$ and γ_{s} behave as N^{-1}

Microscopic Cauchy problem, independent of N [Hillairet, M., Seguin '23]

Consider compatible initial data and the scaling. Then there exists $T_{\infty}>0$, independent of N, such that

$$
\left(\left(c_{k}^{(N)}, R_{k}^{(N)}\right)_{k=1, \ldots, N}, \rho_{f}^{(N)}, u_{f}^{(N)},\left(\rho_{k}^{(N)}, u_{k}^{(N)}\right)_{k=1, \ldots, N}\right)
$$

exists and is unique

- T_{∞} taken smaller and smaller along the proof
- Combine energy and regularity estimates, independent of N
- Smoothness of the velocity $u_{f}^{(N)}$ obtained by extended stress tensors

Extended stress tensors

Linear extension of Σ_{f} and Σ_{g} over the whole domain Ω

\rightsquigarrow Distinct stress tensors
Tensor estimates

$$
\int_{0}^{t}\left[\left\|\tilde{\Sigma}_{f}\right\|_{H^{1}(\Omega)}^{2}+\left\|\tilde{\Sigma}_{g}\right\|_{H^{1}(\Omega)}^{2}+\sum_{k=1}^{N} m_{k}\left(\left|\ddot{R}_{k}\right|^{2}+\left|\ddot{c}_{k}\right|^{2}\right)\right] \mathrm{d} s \leq K
$$

with K independant of N (for $t<T_{\infty}$ sufficiently small)

Outline/Methodology

(1) Microscopic model with N bubbles
(2) Macroscopic to microscopic initial data
(3) Solve the microscopic model
(9) Pass to the limit $N \rightarrow \infty$ to deduce macroscopic quantities
(5) Find the associated macroscopic evolution equations

Pass to the limit $N \rightarrow \infty$ to deduce macroscopic quantities

Fluid unknowns

- Characteristic function of the fluid domain

$$
\left.\chi^{(N)}=\mathbf{1}_{\mathcal{F}(N)} \rightharpoonup \bar{\alpha}_{f} L^{\infty}((0, T) \times \Omega)\right)-w *
$$

- Density $\rho_{f}^{(N)} \longrightarrow \bar{\rho}_{f} \in L^{2}((0, T) \times \Omega)$

Gas unknowns

- Density $\rho_{g}^{(N)}=\sum_{k=1}^{N} \rho_{k}^{(N)} \mathbf{1}_{B_{k}} \longrightarrow \bar{\rho}_{g}$
- Interfacial area/covolume $f^{(N)}=\sum_{k=1}^{N}\left(\frac{1}{2 N R_{k}}\right) \mathbf{1}_{B_{k}}$

$$
f^{(N)} \longrightarrow \bar{f}_{g} \in L^{2}((0, T) \times \Omega)
$$

Mixture unknowns

- Density $\rho^{(N)} \longrightarrow \bar{\rho}$ and velocity $\tilde{u}^{(N)} \longrightarrow \bar{u}$

Pass to the limit $N \rightarrow \infty$ to deduce macroscopic quantities

Fluid unknowns

- Characteristic function of the fluid domain

$$
\left.\chi^{(N)}=\mathbf{1}_{\mathcal{F}(N)} \rightharpoonup \bar{\alpha}_{f} L^{\infty}((0, T) \times \Omega)\right)-w *
$$

- Density $\rho_{f}^{(N)} \longrightarrow \bar{\rho}_{f} \in L^{2}((0, T) \times \Omega)$

Gas unknowns

- Density $\rho_{g}^{(N)}=\sum_{k=1}^{N} \rho_{k}^{(N)} \mathbf{1}_{B_{k}} \longrightarrow \bar{\rho}_{g}$
- Interfacial area/covolume $f^{(N)}=\sum_{k=1}^{N}\left(\frac{1}{2 N R_{k}}\right) \mathbf{1}_{B_{k}}$

$$
f^{(N)} \longrightarrow \bar{f}_{g} \in L^{2}((0, T) \times \Omega)
$$

Mixture unknowns

- Density $\rho^{(N)} \longrightarrow \bar{\rho}$ and velocity $\tilde{u}^{(N)} \longrightarrow \bar{u}$

Methodology

- Use various estimates to prove relative compactness (up to extraction of subsequences)
- Each unknown satisfy an evolution equation

Outline/Methodology

(1) Microscopic model with N bubbles
(2) Macroscopic to microscopic initial data
(3) Solve the microscopic model
(4) Pass to the limit $N \rightarrow \infty$ to deduce macroscopic quantities
(3) Find the associated macroscopic evolution equations

Macroscopic evolution equations

Which evolution equations do we expect?

- Immiscibility constraint
- Void fraction equation $\bar{\alpha}_{f, g}$, accounting for mechanical relaxation
- Partial mass conservations with $\bar{\alpha}_{f} \bar{\rho}_{f}$ and $\bar{\alpha}_{g} \bar{\rho}_{g}$
- Momentum equation with $\bar{\rho} \bar{u}$ with mixture density $\bar{\rho}$

Macroscopic evolution equations

Which evolution equations do we expect?

- Immiscibility constraint
- Void fraction equation $\bar{\alpha}_{f, g}$, accounting for mechanical relaxation
- Partial mass conservations with $\bar{\alpha}_{f} \bar{\rho}_{f}$ and $\bar{\alpha}_{g} \bar{\rho}_{g}$
- Momentum equation with $\bar{\rho} \bar{u}$ with mixture density $\bar{\rho}$

Methodology

\rightsquigarrow Pass to the limit in nonlinear combinations of $\chi^{(N)}(t, x), \rho^{(N)}(t, x)$ and $f_{g}^{(N)}(t, x)$
\checkmark Nonlinear convergence (in the sense of Young measures)

The key ingredient

Nonlinear function $b \in C^{1}\left([0,1] \times \mathbb{R}^{+} \times \mathbb{R}^{+}\right)$and consider the sequence

$$
b^{(N)}(t, x)=b\left(\chi^{(N)}(t, x), \rho^{(N)}(t, x), f_{g}^{(N)}(t, x)\right) \quad \forall(t, x) \in(0, T) \times \Omega
$$

Nonlinear convergence

The sequence $\left(b^{(N)}\right)$ satisfies

$$
\partial_{t} b^{(N)}+\partial_{x}\left(b^{(N)} \tilde{u}^{(N)}\right)+\left(\partial_{2} b^{(N)} \rho^{(N)}+\partial_{3} b^{(N)} f_{g}^{(N)}-b^{(N)}\right) \partial_{x} \tilde{u}^{(N)}=0 \quad \text { in } \mathcal{D}^{\prime}((0, T) \times \Omega)
$$

Moreover, there exists $\bar{b} \in L^{\infty}((0, T) \times \Omega)$ such that

$$
b^{(N)} \rightharpoonup \bar{b}, \quad \text { in } L^{\infty}((0, T) \times \Omega)-w^{\star} \text { when } N \rightarrow+\infty
$$

Some examples

Considering $b^{(N)}=\chi^{(N)}$ and $b^{(N)}=1-\chi^{(N)}$ gives $\bar{b}=\bar{\alpha}_{f}$ and $\bar{b}=\bar{\alpha}_{g}$
The immiscibility constraint holds

$$
\bar{\alpha}_{f}+\bar{\alpha}_{g}=1
$$

Some examples

Considering $b^{(N)}=\chi^{(N)}$ and $b^{(N)}=1-\chi^{(N)}$ gives $\bar{b}=\bar{\alpha}_{f}$ and $\bar{b}=\bar{\alpha}_{g}$
The immiscibility constraint holds

$$
\bar{\alpha}_{f}+\bar{\alpha}_{g}=1
$$

Considering $b^{(N)}=f_{g}^{(N)}$ gives $\bar{b}=\bar{f}_{g}$
The interfacial area \bar{f}_{g} satisfies

$$
\partial_{t} \bar{f}_{g}+\partial_{x}\left(\bar{f}_{g} \bar{u}\right)=0
$$

The macroscopic model

Macroscopic closed system

$$
\left\{\begin{array}{l}
\bar{\alpha}_{f}+\bar{\alpha}_{g}=1, \quad \bar{\rho}=\bar{\alpha}_{f} \bar{\rho}_{f}+\bar{\alpha}_{g} \bar{\rho}_{g} \\
\partial_{t} \bar{\alpha}_{f}+\bar{u} \partial_{x} \bar{\alpha}_{f}=\frac{\bar{\alpha}_{g} \bar{\alpha}_{f}}{\bar{\alpha}_{f} \mu_{g}+\bar{\alpha}_{g} \mu_{f}}\left[\left(\mu_{g}-\mu_{f}\right) \partial_{x} \bar{u}+\left(\mathrm{p}_{f}\left(\bar{\rho}_{f}\right)-\mathrm{p}_{g}\left(\bar{\rho}_{g}\right)\right)-\bar{\gamma}_{s} \frac{\bar{f}_{g}}{\bar{\alpha}_{g}}\right] \\
\partial_{t} \bar{f}_{g}+\partial_{x}\left(\bar{f}_{g} \bar{u}\right)=0 \\
\partial_{t}\left(\bar{\alpha}_{f} \bar{\rho}_{f}\right)+\partial_{x}\left(\bar{\alpha}_{f} \bar{\rho}_{f} \bar{u}\right)=0, \quad \partial_{t}\left(\bar{\alpha}_{g} \bar{\rho}_{g}\right)+\partial_{x}\left(\bar{\alpha}_{g} \bar{\rho}_{g} \bar{u}\right)=0 \\
\partial_{t}(\bar{\rho} \bar{u})+\partial_{t}\left(\bar{\rho}^{2} \bar{u}\right)=\partial_{x} \bar{\Sigma} \\
\text { with } \bar{\Sigma}=\frac{\mu_{g} \mu_{f}}{\bar{\alpha}_{f} \mu_{g}+\bar{\alpha}_{g} \mu_{f}}\left[\partial_{x} \bar{u}-\left(\frac{\bar{\alpha}_{f}}{\mu_{f}} \mathrm{p}_{f}\left(\bar{\rho}_{f}\right)+\frac{\bar{\alpha}_{g}}{\mu_{g}} \mathrm{p}_{g}\left(\bar{\rho}_{g}\right)\right)-\frac{\bar{\gamma}_{s}}{\mu_{g}} \bar{f}_{g}\right]
\end{array}\right.
$$

The macroscopic model

Macroscopic closed system

$$
\left\{\begin{array}{l}
\bar{\alpha}_{f}+\bar{\alpha}_{g}=1, \quad \bar{\rho}=\bar{\alpha}_{f} \bar{\rho}_{f}+\bar{\alpha}_{g} \bar{\rho}_{g} \\
\partial_{t} \bar{\alpha}_{f}+\bar{u} \partial_{x} \bar{\alpha}_{f}=\frac{\bar{\alpha}_{g} \bar{\alpha}_{f}}{\bar{\alpha}_{f} \mu_{g}+\bar{\alpha}_{g} \mu_{f}}\left[\left(\mu_{g}-\mu_{f}\right) \partial_{x} \bar{u}+\left(\mathrm{p}_{f}\left(\bar{\rho}_{f}\right)-\mathrm{p}_{g}\left(\bar{\rho}_{g}\right)\right)-\bar{\gamma}_{s} \frac{\bar{f}_{g}}{\bar{\alpha}_{g}}\right] \\
\partial_{t} \bar{f}_{g}+\partial_{x}\left(\bar{f}_{g} \bar{u}\right)=0 \\
\partial_{t}\left(\bar{\alpha}_{f} \bar{\rho}_{f}\right)+\partial_{x}\left(\bar{\alpha}_{f} \bar{\rho}_{f} \bar{u}\right)=0, \quad \partial_{t}\left(\bar{\alpha}_{g} \bar{\rho}_{g}\right)+\partial_{x}\left(\bar{\alpha}_{g} \bar{\rho}_{g} \bar{u}\right)=0 \\
\partial_{t}(\bar{\rho} \bar{u})+\partial_{t}\left(\bar{\rho}^{2} \bar{u}\right)=\partial_{x} \bar{\Sigma} \\
\text { with } \bar{\Sigma}=\frac{\mu_{g} \mu_{f}}{\bar{\alpha}_{f} \mu_{g}+\bar{\alpha}_{g} \mu_{f}}\left[\partial_{x} \bar{u}-\left(\frac{\bar{\alpha}_{f}}{\mu_{f}} \mathrm{p}_{f}\left(\bar{\rho}_{f}\right)+\frac{\bar{\alpha}_{g}}{\mu_{g}} \mathrm{p}_{g}\left(\bar{\rho}_{g}\right)\right)-\frac{\bar{\gamma}_{s}}{\mu_{g}} \bar{f}_{g}\right]
\end{array}\right.
$$

Additional kinetic equation

- Distribution function in position and radius $S_{t}^{(N)}=\frac{1}{N} \sum_{k=1}^{N} \delta_{c_{k}(t), N R_{k}(t)}$

$$
\left\langle S_{t}^{(N)}, \beta\right\rangle \rightarrow\left\langle\bar{S}_{g}, \beta\right\rangle, \quad \text { in } C([0, T])
$$

- Probability distribution \bar{S}_{g} satisfies

$$
\partial_{t} \bar{S}_{g}-\partial_{x}\left(\bar{S}_{g} \bar{u}\right)+\frac{1}{\mu_{g}} \partial_{r}\left(\left(r\left(\bar{\Sigma}_{g}+\mathrm{p}_{g}\left(\bar{\rho}_{g}\right)\right)+\bar{\gamma}_{s} / 2\right) \bar{S}_{g}\right)=0
$$

- 0-th order moment $\bar{f}_{g}(x)=\int_{\mathbb{R}^{+}} \bar{S}_{g}(x, r) \mathrm{d} r$

Conclusion

(1) Microscopic model with N bubbles
(2) Macroscopic to microscopic initial data
(3) Solve the microscopic model
(4) Pass to the limit $N \rightarrow \infty$ to deduce macroscopic quantities
(3) Find the associated macroscopic evolution equations

To sum up

Comments on the macroscopic model

- Two-pressure one-velocity two-phase flow model
- Both phases are compressible and viscous
- Extension of Bresch \& Hillairet models: mechanical relaxation, surface tension, not a "one-fluid" model
- Additional description
- New variable \bar{f}_{g} : interfacial area in 3D?
- Kinetic equation on the probability distribution \bar{S}_{g} wrt (t, x, r)

To sum up

Comments on the macroscopic model

- Two-pressure one-velocity two-phase flow model
- Both phases are compressible and viscous
- Extension of Bresch \& Hillairet models: mechanical relaxation, surface tension, not a "one-fluid" model
- Additional description
- New variable \bar{f}_{g} : interfacial area in 3D?
- Kinetic equation on the probability distribution \bar{S}_{g} wrt (t, x, r)

To be continued

- Comparison with other bubbly flow models
- 3D extension, at least formal...
- Numerics

To sum up

Comments on the macroscopic model

- Two-pressure one-velocity two-phase flow model
- Both phases are compressible and viscous
- Extension of Bresch \& Hillairet models: mechanical relaxation, surface tension, not a "one-fluid" model
- Additional description
- New variable \bar{f}_{g} : interfacial area in 3D?
- Kinetic equation on the probability distribution \bar{S}_{g} wrt (t, x, r)

To be continued

- Comparison with other bubbly flow models
- 3D extension, at least formal...
- Numerics

Thank you for your attention!

