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Motivations

Liquid

Gas

Context
Nuclear safety: accident situation in pressurized water reactor

High temperature and pressure conditions

Compressible two-phase flows (or multiphase flows) with heterogeneities (bubbles,
droplets...)
Thermodynamical (dis)equilibrium
▶ Thermal, mechanical, mass transfers through the interface

Complex wave interactions (shocks, phase transition...)
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Motivations

Liquid

Gas

Macroscopic description
▶ Derive average models

Implicit description of the interface

Compressible behaviour
Mathematical structure
▶ Well-posedness (smooth solutions, discontinuities...)
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The richest model [Baer, Nunziato ’86]

Euler system for two immiscible phases k = f, g with coupling terms

Phasic state wk = (ρk, uk), w = (wf , wg)

Pressure pk = pk(ρk), chemical potential gk = gk(ρk)

Volume fraction αk ∈ [0, 1]

αf + αg = 1 ρ = αfρf + αgρg

∂tαf + ui(w)∂xαf = λp(w)(pf − pg)

∂t(αkρk) + ∂x(αkρkuk) = λρ(w)(gl − gk)

∂t(αkρkuk) + ∂x(αkρku
2
k + αkpk)− pi(w)∂xαk = λu(w)(ul − uk)

✓ Well-posedness although nonconservative: hyperbolicity, symmetrizable, jump
conditions...

✗ Heuristic closure laws for interfacial quantities ui(w) and pi(w)

✗ Empirical source term (and relaxation time scales λp,ρ,u(w) as well)
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Derivation of averaged models

Averaging approach
[Drew & Passman ’98, Ishii & Hibiki ’06,...]
▶ Microscopic description

▶ Instantaneous local conservation laws for each separated phase
▶ Jump conditions through the interfaces

▶ Averaging process
▶ Introduce time and/or volume scales, or random disturbances
▶ Average the microscopic model wrt the small scales

✓ Baer-Nunziato type model

✗ Closure laws
✗ Definition of the averaging operators

Homogenization approach
[Serre ’91 & ’01, E ’92, Hillairet ’07, Bresch & Huang ’11, Bresch, Hillairet ’15 & ’19, Hillairet ’18,

Bresch, Burtea & Lagoutière ’20,...]
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Homogenization for two-phase flows

Standard approach
Microscopic description
▶ Viscous flows (smooth enough solutions) for both phase
▶ Conditions through the interfaces (“perfect transducers”)

One-fluid model with high-oscillatory density solutions

Pass to the limit to deduce macroscopic quantities ᾱf,g, ρ̄f,g, ρ̄ and ū



ᾱf + ᾱg = 1, ρ̄ = ᾱf ρ̄f + ᾱg ρ̄g

∂tᾱf + ū∂xᾱf =
ᾱgᾱf

ᾱfµg + ᾱgµf

[
(µg − µf )∂xū+ (pf (ρ̄f )− pg(ρ̄g))

]
∂t(ᾱf ρ̄f ) + ∂x(ᾱf ρ̄f ū) = 0, ∂t(ᾱg ρ̄g) + ∂x(ᾱg ρ̄gū) = 0

∂t(ρ̄ū) + ∂x(ρ̄ū
2) = ∂xΣ̄

with Σ̄ =
µgµf

ᾱfµg+ᾱgµf

[
∂xū−

(
ᾱf

µf
pf (ρ̄f ) +

ᾱg

µg
pg(ρ̄g)

)]
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(µg − µf )∂xū+ (pf (ρ̄f )− pg(ρ̄g))

]
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2) = ∂xΣ̄

with Σ̄ =
µgµf

ᾱfµg+ᾱgµf

[
∂xū−

(
ᾱf

µf
pf (ρ̄f ) +

ᾱg

µg
pg(ρ̄g)

)]

Pros & Cons
✓ Fully rigorous
✗ Simple interface behaviors, one-velocity models

Extensions: different EoS [Bresch & Hillairet ’19], temperature [Hillairet ’21], density
overlap [Bresch, Burtea & Lagoutière ’20]
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Homogenization for two-phase flows

Standard approach
Microscopic description
▶ Viscous flows (smooth enough solutions) for both phase
▶ Conditions through the interfaces (“perfect transducers”) ✗

One-fluid model with high-oscillatory density solutions ✗

Pass to the limit to deduce macroscopic quantities ᾱf,g, ρ̄f,g, ρ̄ and ū

ᾱf + ᾱg = 1, ρ̄ = ᾱf ρ̄f + ᾱg ρ̄g

∂tᾱf + ū∂xᾱf =
ᾱgᾱf

ᾱfµg + ᾱgµf

[
(µg − µf )∂xū+ (pf (ρ̄f )− pg(ρ̄g)) + ...

]
∂t(ᾱf ρ̄f ) + ∂x(ᾱf ρ̄f ū) = 0, ∂t(ᾱg ρ̄g) + ∂x(ᾱg ρ̄gū) = 0

∂t(ρ̄ū) + ∂x(ρ̄ū
2) = ∂xΣ̄

with Σ̄ =
µgµf

ᾱfµg+ᾱgµf

[
∂xū−

(
ᾱf

µf
pf (ρ̄f ) +

ᾱg

µg
pg(ρ̄g)

)
+ ...

]
+Additional relations

Goal [Hillairet, M. & Seguin ’23]

Introduce more complex interface behavior

Couple different fluid models
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Outline/Methodology

IC

IC(N) M(N)

M

2

1 3

4

5

1 Microscopic model with N bubbles

2 Macroscopic to microscopic initial data

3 Solve the microscopic model

4 Pass to the limit N → ∞ to deduce macroscopic quantities

5 Find the associated macroscopic evolution equations
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The one-dimensional microscopic model

Assumptions for the microscopic model (first in 3D)
Fluid f , N bubbles of gas g, k ∈ {1, . . . , N}
Compressible Navier-Stokes equations for both phases

Bubbles remain spherical (translation, dilatation, rotation)
Interface conditions
▶ Continuity of the velocity field uf = uk
▶ Surface tension (Σf − Σn)ν = κnν
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Assumptions for the microscopic model (first in 3D)
Fluid f , N bubbles of gas g, k ∈ {1, . . . , N}
Compressible Navier-Stokes equations for both phases

Bubbles remain spherical (translation, dilatation, rotation)
Interface conditions
▶ Continuity of the velocity field uf = uk
▶ Surface tension (Σf − Σn) = γ/Rk

In 1D

Bk
Rk

ck

F0 Fk FN

In the fluid domain F(t)
▶ ρf , uf , Σf = µf∂xuf − pf (ρf )

In each buble Bk(t) = B(ck(t), Rk(t))
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The one-dimensional microscopic model

In 1D

Bk
Rk

ckx−
k x+

k

F0 Fk FN

In the fluid domain F(t) 
∂tρf + ∂x(ρfuf ) = 0

∂t(ρfuf ) + ∂x(ρf (uf )
2) = ∂xΣf

with Σf = µf∂xuf − pf (ρf )

In each buble Bk(t) = B(ck(t), Rk(t)) of (constant) mass mk:
mk c̈k = Σf (t, x

+
k )− Σf (t, x

−
k )

mk

3
R̈k = Σf (t, x

−
k ) + Σf (t, x

+
k )− 2Σk +

γs
Rk

with Σk = µg∂xuk − pg

(
mk

2Rk

)
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The one-dimensional microscopic model

In 1D

Bk
Rk

ckx−
k x+

k

F0 Fk FN

In the fluid domain F(t) 
∂tρf + ∂x(ρfuf ) = 0

∂t(ρfuf ) + ∂x(ρf (uf )
2) = ∂xΣf

with Σf = µf∂xuf − pf (ρf )

In each buble Bk(t) = B(ck(t), Rk(t)) of (constant) mass mk:
mk c̈k = Σf (t, x

+
k )− Σf (t, x

−
k )

mk

3
R̈k = Σf (t, x

−
k ) + Σf (t, x

+
k )− 2Σk +

γs
Rk

with Σk = µg∂xuk − pg

(
mk

2Rk

)
Well posedness of the Cauchy problem for a time T > 0, depending on N ...
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Macroscopic to microscopic initial data

At the macroscopic scale, both fluids are present everywhere in the domain Ω

Macroscopic initial data
Density of the fluid ρ̄0f ≥ ρmin

Density of the gas ρ̄0g ≥ ρmin

Mean velocity ū0

Void fraction ᾱ0
g

Reconstruction of gas-bubble distribution
Probability distribution of the bubbles, in position x and radius r

S̄0
g = S̄0

g(x, r) ∈ L1(Ω× R+)

Moments of the probability distribution S̄0
g :

1−st order moment ⇝ void fraction

ᾱ0
g(x) =

∫
R+

(2r)S̄0
g(x, r)dr

0−th order moment (⇝ gas covolume or “interfacial area”)

f̄0
g (x) =

∫
R+

S̄0
g(x, r)dr
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Macroscopic to microscopic initial data

Family of microscopic initial data to be constructed from S̄0
g , ρ̄0f,g and ū0

For any bubble number N ≥ 1:
1 Define a bubble distribution from S̄0

g to get (c
(N)
k , R

(N)
k )k=1,...,N

2 Define the densities {
ρ
(N)
f (0, x) on F (N)(0)

ρ
(N)
k (0, x) on B

(N)
k (0)

3 Define the velocities {
u
(N)
f (0, x) on F (N)(0)

ċ
(N),0
k and Ṙ

(N),0
k on B

(N)
k (0)
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Outline/Methodology

IC
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Solve the microscopic model

Scaling
mk, R0

k, |F0
k | and γs behave as N−1

Microscopic Cauchy problem, independent of N [Hillairet, M., Seguin ’23]
Consider compatible initial data and the scaling. Then there exists T∞ > 0, independent
of N , such that (

(c
(N)
k , R

(N)
k )k=1,...,N , ρ

(N)
f , u

(N)
f , (ρ

(N)
k , u

(N)
k )k=1,...,N

)
exists and is unique

T∞ taken smaller and smaller along the proof

Combine energy and regularity estimates, independent of N

Smoothness of the velocity u
(N)
f obtained by extended stress tensors
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Extended stress tensors

Linear extension of Σf and Σg over the whole domain Ω

−1 1

BkF0

Σ̃f

Σ̃g

Fk FN

⇝ Distinct stress tensors
Tensor estimates∫ t

0

[
∥Σ̃f∥2H1(Ω) + ∥Σ̃g∥2H1(Ω) +

N∑
k=1

mk

(
|R̈k|2 + |c̈k|2

)]
ds ≤ K

with K independant of N (for t < T∞ sufficiently small)
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Pass to the limit N → ∞ to deduce macroscopic quantities

Fluid unknowns
Characteristic function of the fluid domain

χ(N) = 1F(N) ⇀ ᾱfL
∞((0, T )× Ω))− w∗

Density ρ
(N)
f −→ ρ̄f ∈ L2((0, T )× Ω)

Gas unknowns
Density ρ

(N)
g =

∑N
k=1 ρ

(N)
k 1Bk −→ ρ̄g

Interfacial area/covolume f (N) =
∑N

k=1

(
1

2NRk

)
1Bk

f (N) −→ f̄g ∈ L2((0, T )× Ω)

Mixture unknowns
Density ρ(N) −→ ρ̄ and velocity ũ(N) −→ ū
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Interfacial area/covolume f (N) =
∑N

k=1

(
1

2NRk

)
1Bk

f (N) −→ f̄g ∈ L2((0, T )× Ω)

Mixture unknowns
Density ρ(N) −→ ρ̄ and velocity ũ(N) −→ ū

Methodology
Use various estimates to prove relative compactness (up to extraction of
subsequences)
Each unknown satisfy an evolution equation
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Macroscopic evolution equations

Which evolution equations do we expect?
Immiscibility constraint

Void fraction equation ᾱf,g, accounting for mechanical relaxation

Partial mass conservations with ᾱf ρ̄f and ᾱg ρ̄g

Momentum equation with ρ̄ū with mixture density ρ̄
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Macroscopic evolution equations

Which evolution equations do we expect?
Immiscibility constraint

Void fraction equation ᾱf,g, accounting for mechanical relaxation

Partial mass conservations with ᾱf ρ̄f and ᾱg ρ̄g

Momentum equation with ρ̄ū with mixture density ρ̄

Methodology
⇝ Pass to the limit in nonlinear combinations of χ(N)(t, x), ρ(N)(t, x) and f

(N)
g (t, x)

✓ Nonlinear convergence (in the sense of Young measures)
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The key ingredient

Nonlinear function b ∈ C1([0, 1]× R+ × R+) and consider the sequence

b(N)(t, x) = b(χ(N)(t, x), ρ(N)(t, x), f (N)
g (t, x)) ∀(t, x) ∈ (0, T )× Ω

Nonlinear convergence

The sequence (b(N)) satisfies

∂tb
(N)+∂x(b

(N)ũ(N))+
(
∂2b

(N)ρ(N)+∂3b
(N)f (N)

g −b(N))∂xũ
(N) = 0 in D′((0, T )×Ω)

Moreover, there exists b̄ ∈ L∞((0, T )× Ω) such that

b(N) ⇀ b̄, in L∞((0, T )× Ω)− w⋆ when N → +∞
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Some examples

Considering b(N) = χ(N) and b(N) = 1− χ(N) gives b̄ = ᾱf and b̄ = ᾱg

The immiscibility constraint holds

ᾱf + ᾱg = 1

Considering b(N) = f
(N)
g gives b̄ = f̄g

The interfacial area f̄g satisfies

∂tf̄g + ∂x(f̄gū) = 0
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The macroscopic model

Macroscopic closed system

ᾱf + ᾱg = 1, ρ̄ = ᾱf ρ̄f + ᾱg ρ̄g

∂tᾱf + ū∂xᾱf =
ᾱgᾱf

ᾱfµg + ᾱgµf

[
(µg − µf )∂xū+ (pf (ρ̄f )− pg(ρ̄g))− γ̄s

f̄g
ᾱg

]
∂tf̄g + ∂x(f̄gū) = 0

∂t(ᾱf ρ̄f ) + ∂x(ᾱf ρ̄f ū) = 0, ∂t(ᾱg ρ̄g) + ∂x(ᾱg ρ̄gū) = 0

∂t(ρ̄ū) + ∂t(ρ̄
2ū) = ∂xΣ̄

with Σ̄ =
µgµf

ᾱfµg+ᾱgµf

[
∂xū−

(
ᾱf

µf
pf (ρ̄f ) +

ᾱg

µg
pg(ρ̄g)

)
− γ̄s

µg
f̄g

]

Additional kinetic equation

Distribution function in position and radius S
(N)
t =

1

N

∑N
k=1 δck(t),NRk(t)

⟨S(N)
t , β⟩ → ⟨S̄g, β⟩, in C([0, T ])

Probability distribution S̄g satisfies

∂tS̄g − ∂x(S̄gū) +
1

µg
∂r((r(Σ̄g + pg(ρ̄g)) + γ̄s/2

)
S̄g) = 0

0-th order moment f̄g(x) =
∫
R+ S̄g(x, r)dr
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Conclusion

IC

IC(N) M(N)

M

2

1 3

4

5

1 Microscopic model with N bubbles

2 Macroscopic to microscopic initial data

3 Solve the microscopic model

4 Pass to the limit N → ∞ to deduce macroscopic quantities

5 Find the associated macroscopic evolution equations
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To sum up

Comments on the macroscopic model
Two-pressure one-velocity two-phase flow model
▶ Both phases are compressible and viscous
▶ Extension of Bresch & Hillairet models: mechanical relaxation, surface tension, not a

“one-fluid" model
Additional description
▶ New variable f̄g : interfacial area in 3D?
▶ Kinetic equation on the probability distribution S̄g wrt (t, x, r)

To be continued ®
Comparison with other bubbly flow models

3D extension, at least formal...

Numerics

Thank you for your attention!
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