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Genetic diversity and spatial structure

Aim: Model and understand the evolution of the genetic diversity of
a population having a continuous spatial structure.
 Dimension 2 is the most relevant for applications to biological pop.,
but the mathematical models are interesting in any dimension.



Footprint of a spatial structure

I Interactions/reproduction require that individuals should be
sufficiently close to each other.

I Offspring are born in a more or less extended neighbourhood of
their parents.

I The selective advantage offered by certain alleles depends on
the environment, which can vary from one region to another.

 Local allelic distributions are correlated, in a specific way that
depends on parameters such as the speed of spatial diffusion of
genes across the population.



Questions of interest

I (Compound) parameters characterising the genetic diversity in a
population and its evolution?

I Correlation pattern between the local allelic distributions at
several locations, under different evolutionary scenarios?
Inference methods for the estimation of the corresponding key
parameters?

I Detection of evolutionary forces in action based on appropriate
types of data?



The spatial Λ-Fleming-Viot process

(Barton & Etheridge, 2008)

Allele/type space : K compact (K = {0,1}, for example).

Population at time t : Measure Mt on Rd × K whose first marginal
distribution is Lebesgue measure (uniform density of indv.). Possible
decomposition:

Mt (dx ,dk) = dx ρt (x ,dk).

Evolution : µ a σ-finite measure on R∗+, {νr , r > 0} a collection of
probability measures on [0,1]. Let Π be a Poisson point process on
R× Rd × R∗+ × [0,1] with intensity measure dt ⊗ dx ⊗ µ(dr)νr (du).

If (t , x , r ,u) ∈ Π, at time t and in B(x , r):

I We choose a parental allele κ according to the allele distribution
at time t− within B(x , r);

I For every y ∈ B(x , r), ρt (y ,dk) = (1− u)ρt−(y ,dk) + uδκ(dk).
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Over larger scales

Initial configuration:

Simulations by H. Saadi. Fixed radius, u ≡ 1.



Over larger scales

After 2.106 events:

Simulations by H. Saadi. Fixed radius, u ≡ 1.



Over larger scales

After 3.106 events:

Simulations by H. Saadi. Fixed radius, u ≡ 1.



Over larger scales

After 4.106 events:

Simulations by H. Saadi. Fixed radius, u ≡ 1.



Over larger scales

After 5.106 events:

Simulations by H. Saadi. Fixed radius, u ≡ 1.



A few remarks

Existence/uniqueness:
I Initially obtained in Barton et al. (2010) via an analytical method

due to Evans (1997),
I then via a particle construction (V. & Wakolbinger, 2015;

Etheridge & Kurtz, “2019”).

Sufficient condition:∫ ∞
0

∫ 1

0
urd νr (du)µ(dr) <∞.

State space: Mλ, endowed with the topology of vague convergence
(which makes it a compact space).

Very flexible framework: Gaussian replacements, possibility to add
natural selection, recombination, inhomogeneous environment, ...
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Genealogies and duality

I We trace back the origin of the alleles observed in a sample of j
individuals “genealogical” process

I ({ξ1
s , . . . , ξ

Ns
s })s≥0 system of correlated symmetric jump

processes, which coalesce/merge when they are affected by the
same event.

I Jump rate of an ancestral lineage (presently at 0):∫
Rd

∫ ∞
0

∫ 1

0
1B(x,r)(0)u νr (du)µ(dr)dx =

∫ ∞
0

∫ 1

0
uVr νr (du)µ(dr) <∞.

I If K = {0,1} and wt (x) := ρt (x , {1}): for every ψ ∈ Cc((Rd )j ),

Ew0

[ ∫
(Rd )j

ψ(x1, . . . , xj )

{ j∏
i=1

wt (xi )

}
dx1 · · · dxj

]

=

∫
(Rd )j

ψ(x1, . . . , xj )E{x1,...,xj}

[ Nt∏
i=1

w0
(
ξi

t
)]

dx1 · · · dxj .
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Long term evolution at an interface
(Berestycki, Etheridge & V., 2013)

Geographical space : Rd Allele space: {0, 1}

I Case 1: Constant radius
We fix R > 0 and u ∈ (0,1]. All events have radius R and impact
u.
 Reproductions are purely local.

I Case 2: Heavy-tailed radii
We fix α ∈ (1,2) and u ∈ (0,1]. Intensity measure on radii given
by

µ(dr) =
1{r>1}

rd+α+1 dr .

 Allows the occurrence of rare but very large events.
 Ancestral lineages behave like α-stable processes.
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Time- and space-scales

I Case 1: Constant radius and impact
I Case 2: Constant impact, intensity r−(d+α+1) dr for radii.

We set α = 2 in case 1 and for every n ≥ 1,

wn
t (x) := wnt (n1/αx).

Initial condition: w0(x) = 1H(x), where H = {x(1) ≤ 0}.

Questions: How does wn
t behave when n is large? Width of the

interface? Resulting pattern of genetic diversity?
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Purely local reproductions, d = 1

u = 0.8, r = 0.033 and n = 103. Initial condition, after 105 events, after 107 events.
(Simulations by J. Kelleher, Oxford Univ.)



That is...

Theorem 1 (Berestycki, Etheridge & V., 2013)

I There exists a process (M(2)
t , t ≥ 0), with values inMλ, such that

Mn (f .d.d.)−→ M(2) as n→∞.

I Moreover, there exists σ̃2 > 0 such that, if X denotes standard Brownian
motion and

p(2)
t (x) := Px

[
Xuσ̃2t ∈ H

]
, then

 If d = 1: for all t > 0, w (2)
t is a random field of correlated Bernoulli

r.v. satisfying
E
[
w (2)

t (x)
]

= p(2)
t (x).

 If d ≥ 2: for all t ≥ 0, w (2)
t (x) = p(2)

t (x) Lebesgue-a.e.
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In the presence of catastrophes, d = 1

u = 0.8, α = 1.3 and n = 104 (Simulations by J. Kelleher).
(a) Initial condition, (b-c) after 100 events, (d-e) after 106 events.



In the presence of catastrophes, d = 2

u = 0.8, α = 1.3 and n = 103. After 105, 106 and 107 events.
(Simulations by J. Kelleher)



Asymptotic behaviour in the presence of large events

Theorem 2 (Berestycki, Etheridge & V., 2013)

I There exists a process (M(α)
t , t ≥ 0), with values inMλ, such that

Mn (f .d.d.)−→ M(α) as n→∞.

I Moreover, there exists a symmetric α-stable process X (α) such that, if

p(α)
t (x) := Px

[
X (α)

ut ∈ H
]
,

then in any dimension, for all t > 0, w (α)
t is a random field of correlated

Bernoulli r.v. satisfying

E
[
w (α)

t (x)
]

= p(α)
t (x).



Conclusions

I No local coexistence of alleles except if d ≥ 2 and
reproductions are purely local.

I The correlations between the local allele frequencies are
characterised by the genealogical process.
Correlation length:
I
√

n in the case of constant (or bounded) event radius,
I n1/α in the case of heavy tailed radius distribution.

 Rare but massive extinction/recolonisation events may have a
significant impact on the genetic diversity seen in a population.



An example of spatial clustering - C. elegans in the
wild (M.-A. Félix & H. Teotonio - ENS)

I A complex life cycle, with an optional dauer phase during which it
only moves - does not eat/reproduce.

I Local population dynamics in “boom and bust”:
I Appearance of a food source exponential growth
I Exhaustion of the resource transition to dauer stage

I Migration possible via individual motion (slow) and/or by
hitchhiking in groups (∼10 individuals, potentially moving several
meters hung on a snail or an isopod).



(Richaud et al., 2018)

Sampling location: Santeuil (Paris
region)

Type of data: Haplotypes of C.
elegans (orange, green, blue) + C.
briggsae (red)

S60 (4) 
S61 (1)

S63 (1)

S64
S65 (1)

S68 (7)
S70 (1)

S73

S76 (5)
S77 (1)

S78 (7)

S85 (1)

S86 (6)

S87

S96 (6)

S97
  (1)

S98 (5)

S100 (1)

S101 (6)

S102

S103 (6)
S104 (3)

S105 (6)
S106 (6)

S107 (6)
S109 (5)

S110 (6)

(3 HS1; 3 HS3) 

(4 HS3; 1 HS2 
1 HS3/HS1?)

S70

S60
S61

HS2
HS3

HS1

C. briggsae

C. elegans haplotypes:

no Caenorhabditis

10 m

Santeuil 25 Oct 2009



Why you may doubt

I For a 1mm long nematode, a 10m wide strip is not particularly
one-dimensional...

I All we can conclude is that a neutral model is compatible with
this type of spatial segregation, but maybe (or almost surely...)
individuals are in competition for resources, and subject to
selection pressures due to pathogens.
 “Boom and bust” dynamics reinforcing a selective pattern?

I Still, in “2d” (apple orchard in Orsay), minor haplotypes are
maintained and spatial segregation is not observed.

Reference: A. Richaud, G. Zhang, D. Lee, J. Lee, M.-A. Félix (2018). The local coexistence pattern
of selfing genotypes in Caenorhabditis elegans natural metapopulations. Genetics, 208(2),
807–821.



The effects of a weak selection pressure

We bias the choice of the parent by giving a slight reproductive advantage to
individuals with allele 0 over individuals with allele 1.

I One way to proceed:
 ΠN PPP on R×Rd ×R∗+ × [0, 1] with intensity dt ⊗ dx ⊗ µ(dr)νr (du).
Local update of the allele frequencies: we draw κ according to the allelic
distr. in the area of the event, then ∀y ∈ B(xi , ri ),

wti (y) = (1− ui )wti−(y) + ui1{κ=1}.

 ΠS PPP on R× Rd × R∗+ × [0, 1], indep. of ΠN and with intensity
s′dt ⊗ dx ⊗ µ(dr)νr (du). This time, we choose two alleles κ, κ′ indep.
and according to the allelic distr. in the area of the event, and then
∀y ∈ B(xi , ri ),

wti (y) = (1− ui )wti−(y) + ui1{κ=κ′=1}.

I Dual process of potential ancestors, where ancestral lineages can
also branch during the events of ΠS .
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Weak selection and high population density
(Etheridge, V. & Yu, 2020)

un =
u
nγ
, sn =

s
nδ
, wn

t (x) = wnt
(
nβx

)
,

or rather:

wn
t (x) :=

ndβ

VR

∫
B(x,n−βR)

wn
t (y)dy and M

n
t with ‘density’ wn

t .

Again, for every n ∈ N
 Case 1: all events are of fixed radius R > 0 and impact un.
 Case 2: the intensity measure on radii is

µ(dr) =
1{r>1}

rd+α+1 dr , α ∈ (1,2),

and the impact un is fixed. (And we take R = 1 in the def. of wn
t (x).)
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Case of purely local reproductions

Theorem 3 (Etheridge, V. & Yu, 2020)

un = un−1/3, sn = sn−2/3, wn
t (x) = wnt

(
n1/3x

)
If M

n
0 converges to M0 ∈Mλ as n→∞, then (M

n
t )t≥0 converges in law in

DMλ [0,∞) to a Markov process M∞, with initial value M0 and characterised
by: for all families {w∞t , t ≥ 0} of representatives of the density of each M∞t
and every f ∈ C∞c (Rd ),(
〈w∞T , f 〉 − 〈w∞0 , f 〉 −

∫ T

0

{
uΓR

2
〈w∞t ,∆f 〉 − VRus〈w∞t (1− w∞t ), f 〉

}
dt
)

T≥0

is a martingale with quadratic variation zero if d ≥ 2 and

4R2u2
∫ T

0
〈w∞t (1− w∞t ), f 2〉dt

if d = 1, where ΓR > 0 depends only on d and R.



In the presence of large events

Theorem 4 (Etheridge, V. & Yu, 2020)

un = un−
α−1

2α−1 , sn = sn−
α

2α−1 , wn
t (x) = wnt

(
n

1
2α−1 x

)
If M

n
0 converges to M0 ∈Mλ as n→∞, then (M

n
t )t≥0 converges in law in

DMλ [0,∞) to a Markov process M∞, with initial value M0 and characterised
by: for every family {w∞t , t ≥ 0} of representatives of the density of each
M∞t and for every f ∈ C∞c (Rd ),(
〈w∞T , f 〉−〈w∞0 , f 〉−

∫ T

0

{
Cu〈w∞t , (−∆)α/2f 〉−V1us

α
〈w∞t (1−w∞t ), f 〉

}
dt
)

T≥0

is a martingale with quadratic variation zero if d ≥ 2 and

4u2

α− 1

∫ T

0
〈w∞t (1− w∞t ), f 2〉dt

if d = 1, where C depends only on d .



Next questions

I Methods for parameter estimation (Barton, Etheridge, Kelleher
& V. 2013, Guindon et al. 2016, Forien et al. 2023)

I Many other parameter regimes or forms of selection to explore
(A. Etheridge, S. Penington, ...)

I Effects on linked neutral genes (Barton, Etheridge, Kelleher &
V. 2013b) and detection of a recent selective sweep?

I Impact of stochasticity on range expansions (Louvet 2023,
Louvet & V. 2023).

 A very interesting question is that of gene surfing (cf. work by
O. Hallatschek, D.R. Nelson, ...).
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Genetic diversity in expanding populations

Hallatschek et al. (2007), PNAS. Sectors forming after placing a well-mixed droplet (or
line) of fluorescent-green/red bacteria (left) or yeast (right).



Merci pour votre attention !
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